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Abstract
Loop interchange is an important code optimization that im-
proves data locality and extracts parallelism. While previous
research in compilers has tried to automate the selection
of which loops to interchange, existing methods have an
important limitation. They use less precise machine mod-
els. This is mainly because developing a model to predict
whether to interchange two loops is challenging since such
a prediction depends on many factors. While state-of-the-art
methods try to avoid this problem by using a deep-learning
based cost model, they suffer from another limitation. They
scale proportionally with the number of loop levels of a
given loop nest. This is mainly because they use the model
to evaluate all the possible loop interchanges (or a subset of
the most promising ones). In this paper, we propose a novel
deep-learning model for loop interchange that addresses the
previous limitations. It takes a code representation as input
and predicts the best pair of loops to interchange. Compared
to state-of-the-art deep-learning based cost models, it re-
quires constant time to predict the best loop interchange.
This is in contrast to state-of-the-art deep learning models
that are used to evaluate all the loop pairs and then pick
the best one. The proposed model is the first deep learning
model that requires a constant time to predict the best loops
to interchange. The model is implemented and evaluated
in the Tiramisu compiler, a state-of-the-art polyhedral com-
piler. We evaluate the proposed model on a benchmark of
Tiramisu programs and show an accuracy of 76.66% for 1-
shot and 94% for 2-shots. Experiments show that our model
outperforms the cost model currently used by the Tiramisu
compiler by 6.66% in terms of 1-shot accuracy, and 14% with
2-shots accuracy, while at the same time reducing the total
execution time needed for predicting the best pair of loops
to interchange.

Keywords: loop interchange, automatic code optimization,
cost model, deep learning, compilers, Tiramisu

1 Introduction
With the increasing need for high performance code and
the increasing complexity in hardware, code optimization

∗Both authors contributed equally to this research.

is becoming more and more important. An example of im-
portant code optimizations is loop interchange (a.k.a., loop
permutation or loop reordering). It is an optimization that
aims at interchanging, or permuting, two loop levels with
the goal of improving data locality or enabling parallelism.
Different compilers use different methods to choose the

best loops to interchange. Some use analytical models [8, 15].
However, such models are less precise and do not necessarily
take into consideration all the factors to correctly optimize
code. To illustrate this, let us look at the following code of an
image processing convolution (Figure 1). When this code is
optimized by Pluto[8], a state-of-the-art polyhedral compiler,
the resulting code is 17 times slower than hand-written code
optimized for a 24-core machine1.

f o r c in 0 . . 3
f o r x in 1 . .WIDTH−1

f o r y in 1 . . HEIGHT−1
ou tpu t [ c , x , y ] =
( img [ c , x +1 , y −1] + img [ c , x +1 , y ] + img [ c , x +1 , y +1] +
img [ c , x , y −1] + img [ c , x , y ] + img [ c , x , y +1] +
img [ c , x −1 , y −1] + img [ c , x −1 , y ] + img [ c , x −1 , y + 1 ] ) / 9

Figure 1. Image processing convolution.

The main reason for the slowdown is that Pluto uses a
linear cost model that does not capture the full complexity of
the space of code optimizations. More precisely, Pluto uses
Integer Linear Programming (ILP) to minimize the distance
between producer and consumer statements. While this ob-
jective maximizes data locality and outermost parallelism,
considering only these two factors is not enough. In this code,
Pluto decides to parallelize the outermost loop, however, be-
cause the extent of this loop is three, only three threads can
be run in parallel, which under-utilizes the 24-core machine
being used. A better optimization approach would be to in-
terchange the first two loops, and then parallelize the new
outermost loop. Although this reduces data locality (since ac-
cesses to img would become non-contiguous), the resulting
program would run faster as it is now able to utilize many
more parallel threads.

11080p input image
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Recent research has tried to address the previous problem
by building deep-learning models to find the best loop trans-
formations (including loop interchange)[2, 5, 9]. For instance,
Tiramisu[5], another state-of-the-art polyhedral compiler,
uses a deep learning cost model to predict the best loop
interchange to apply. It applies loop interchange on each
pair of loops in the code, and uses a deep-learning based
cost model to predict the speedup in each case. It then picks
the loop interchange that provides the best speedup. While
this approach improves the accuracy of the model, the time
needed to find the best loops to interchange grows quadrat-
ically with the number of loop levels, making the search
space of the loop interchange transformation large. In addi-
tion, as each possible loop interchange is combined with the
exploration of further code optimizations afterwards (loop
parallelization, skewing, reversal, tiling, unrolling, etc.), the
search space becomes much larger.
To overcome these limitations, we propose a novel deep

learning model that only requires constant time to predict
the best loops to interchange. It takes, as input, a loop nest
representation and predicts, as output, the best loops to in-
terchange (if interchange is needed). In comparison with
state-of-the-art deep-learning based cost models, it predicts
directly which loops should be interchanged, and therefore
it only requires constant time to find the best loops to inter-
change, instead of requiring quadratic time, which reduces
the overall code optimization time. The proposed model is
designed for Intel Xeon E5-2695 CPUs (12-cores). It is inte-
grated in the Tiramisu compiler, and is trained on a dataset
of randomly generated Tiramisu programs. Each program in
the dataset is labeled with the best loop interchanges.

While our model is specific to a particular CPU (on which
datawas collected), our approach itself is hardware-independent
and can be reproduced for other CPU architectures without
any adaptations being required. This ease of portability is
due to the fact that the model’s architecture, and the in-
put characterization adopted are hardware independent. To
adapt the model to other architectures, one need only to
generate data on that machine and then retrain the model.

The contributions of this paper are as follows:

• Wepresent the first deep learningmodel for predicting
the best loops to interchange in constant time.

• We release a dataset of 208919 Tiramisu programs,
each labeled with their best loop interchange.

• We integrate the proposed cost model into the auto-
scheduler of Tiramisu and provide and evaluation
compared to state-of-the-art polyhedral compilers.

In the first section of this paper, we present a background
on loop interchange. Then, we present the proposed model,
the representation of its input and the dataset used in the
training. Last, we evaluate the model on standard bench-
marks and synthetic programs.

2 Background on Loop Interchange
Loop interchange is a high-level code optimization. It op-
erates by permuting two loops in a loop nest, in order to
improve parallelism and data locality [3].

An example ofwhy loop interchange is important is shown
in the following example (Figure 2). C language is used in
the example so the 2D-arrays are stored in row-major order.
We suppose that the cache memory line size is enough to
load a whole row of the array A.

f o r ( j = 0 , j < M, j ++ )
f o r ( i = 0 , i < N , i ++ )

A[ i , j +1] = A[ i , j ] + 1 ;

Figure 2. Example of a simple 2-loop program

For each two successive iterations (j,i), the memory ac-
cesses of one iteration belong to a different cache line than
the previous one. This may result in a cache miss that pro-
duces an extra access to the main memory to fetch the new
line. Such accesses cause performance degradation, as 𝑁 ∗𝑀
main memory access will be needed.
However, using loop interchange, we can permute the i

and the j loops, resulting in the following code (Figure 3).

f o r ( i = 0 , i < N , i ++ )
f o r ( j = 0 , j < M, j ++ )

A[ i , j +1] = A[ i , j ] + 1 ;

Figure 3. Example of a simple 2-loop program after loop
interchange.

This way, for each iteration of the outermost loop i, all
the memory accesses are within the same cache line, which
means that less memory accesses are needed (only N access
at most) which improves the performances. Furthermore, this
new order makes the outermost loop iterations independent
of each other, which allows their parallelization improving
performance further.
Let us take another example to further show the effect

of loop interchange. Let us take the matrix multiplication
algorithm. In this example, we measure the execution time
for all the possible loop interchanges in the code (i.e., all the
possible loop orders). The speedup of the transformed pro-
gram over the original program, measured after application
of each of the possible loop interchanges, is shown in Table
1 (in the table, I(L0,L1) means interchanging the loop level 0,
which is the outermost, with loop level 1).

We can see that interchanging the two inner loops has
quadrupled the performance of the code. However, inter-
changing the inner- and the outer-most loops made the per-
formance nearly 3 times worse.
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Table 1. Speedups obtained after the application of different
loop interchanges on matrix multiplication.

Loop interchange Measured Speedup

None 1.00
I(L0,L1) 0.90
I(L0,L2) 0.37
I(L1,L2) 4.04

3 Dataset Construction
Since our goal is to build a deep learning model for choosing
the best loop interchanges to apply on an input programwrit-
ten in Tiramisu, we need a dataset containing Tiramisu pro-
grams to train the model on. Furthermore, since our model
will be trained in a supervised manner, we need to label
the dataset, by defining the best loop interchanges for each
program.
Tiramisu [6] is a domain-specific language (DSL) embed-

ded in C++. It provides a C++ API that allows users to write
a high level, architecture-independent algorithm and a set
of API calls to select which code transformations should be
applied. It uses the polyhedral model internally [4, 6, 8, 12],
to represent code, code transformations, and to reason about
the correctness of code transformations. A Tiramisu program
has two parts: an algorithm, describing the computation
to-be-executed, and a schedule, describing in which order
code should be executed (i.e., how it should be optimized).
This separation allows an easier switching between different
schedules.
However, in order to build a dataset, a large number of

Tiramisu programs are required. To solve this challenge,
Baghdadi et al [5] have resorted to generating synthetic
data in order to train their cost model, used currently in the
Tiramisu auto-scheduler. These programs are generated au-
tomatically, simulating real programs by using probabilistic
distributions. Each one of these randomly generated pro-
grams are coupled with different schedules generated ran-
domly, then compiled and executed, and finally, a measure of
the execution time is recorded. The final dataset is composed
of the tuples, where each tuple is a program, a schedule, and
an execution time.
We used the same methodology described above to gen-

erate the dataset needed to train our model. We generated
208919 data points, each data point is a pair of a program, and
a list of loop interchanges ordered from the best to the worst
according to their recorded execution time. The machine
used to generate the data is described in Section 6.

4 Program Characterization
The input of the model is represented as a set of simple high-
level features, extracted from the code. This way, neither the
compilation nor the execution of the program are needed to

obtain the features used by our model. This representation
has also been used by the cost model of Tiramisu [5]. It is
based on the AST (Abstract Syntax Tree) representation of
programs. Every leaf represents a statement (computation
[6]). Every non-leaf node represents a loop level, with the
root being the outermost loop in the program.
A detailed example of the input representation is illus-

trated in the Figure 4. The program used in the example
contains 2 instructions (2 computations in Tiramisu’s terms),
whose depth are 3 and 4 respectively. The two outermost
loops are shared between them (the program structure is
represented by its AST in the figure). Each instruction is
represented by a computation vector. This structure is com-
posed of two sub-vectors: loop nest representation vector
and assignment vector. Their content is described below.

• Loop nest representation vector: This sub-vector
contains information about the loop levels surround-
ing the computation being represented. Every entry
in the vector represents a loop, and thus is composed
of: the upper and lower bounds of the loop, as well as
two boolean tags, one expressing whether loop fusion
has been applied on the loop, and the other is set if
the loop level dimension is contributing in defining
the computation output buffer’s dimension.

• Assignment vector: This records the array accesses
used in both the left- and right-hand sides of the state-
ment. Each one is presented by an access matrix and
an identifier. The former stores the coefficient of the
array access, in the same way as the polyhedral model
representation for array accesses [13]. Each row rep-
resents a buffer dimension, and each column a loop
iterator (to which we add an extra column for con-
stants). Only affine array accesses are represented by
this schema, as Tiramisu being polyhedral, only sup-
ports affine accesses [5]. The assignment vector also
includes integers representing the total count of the
operations in the assignment (addition, multiplication,
division, and subtractions). Last, an extra integer is
added that contains the loop nest depth of the compu-
tation.

5 Model’s Architecture
The proposed model aims to predict the best loops to be
interchanged in a Tiramisu program (if any loop should be
interchanged). Since the set of loop pairs in a program is dis-
crete, we represent this problem as a classification problem.
The architecture of the proposed model is similar to that

used by Baghdadi et al. [5]. In the latter, the first two lay-
ers are responsible for extracting a vector representing the
Tiramisu program including all of the loops and computa-
tions of that program. In our work, we have used the architec-
ture of these first two layers, and added a last classification
layer.
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Loop i Loop j Loop l Loop m A2A1 A3 ... An
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Figure 4. Program characterization structure.

5.1 Computation Embedding Layer
The first layer of the model extracts an embedding from the
computation vectors. Each computation vector is processed by
a feedforward neural network, as shown in Figure 5, in order
to be transformed into a fixed size computation embedding
vector containing abstract attributes, specific to each compu-
tation. We call this vector a CEV (Computation Embedding
Vector).

Layer 1 :
Computation
Embedding Layer


Computation
Vector 1

Computation
Vector 2

Computation
Vector 3


CEV 1 CEV 2 CEV 3

FeedForward
Neural Network

Computation
Embedding Vector

Figure 5. The architecture of the model’s first layer.

5.2 Recursive Loop Embedding Layer
This layer is recursive following the hierarchy of the program.
For each loop level, and starting with the innermost level, a
loop embedding unit is created to represent a loop level, as
shown in Figure 6.

CEV 1 CEV 3 CEV 4

Loop
Embedding

Unit

Loop
Embedding

Vector

CEV 2

Loopk

Loopm

Loopl

Loopj

Loopi

Program Embedding Vector

Layer 2 :
Recursive Loop
Embedding Layer


k

m

l

j

i

Loop Vector

Figure 6. The architecture of the model’s second layer.

However, we have made a modification at this level: in
addition to passing to each embedding unit the computation
embedding vectors and the loop embedding vectors, we also
pass the loop vector, which is the vector corresponding to the
current loop level in the loop nest representation, and which
contains features about the current loop level (loop extents).
Figure 7 summarizes the structure of the loop embedding unit
we use for our model.

𝐿𝑆𝑇𝑀𝐴 represents a long short-term memory (LSTM) net-
work which transforms all the CEVs of the current loop level
into a fixed size vector. Similarly, 𝐿𝑆𝑇𝑀𝐵 is a separate LSTM
network which transforms all the loop embedding vectors of
other loop levels nested in the current loop itself (see Loop
j in Figure 6 for example). These two LSTM output vectors
will be concatenated with the loop vector, and processed
by a feedforward neural network to create the current loop
embedding vector.

LSTM A LSTM B

Loop
Embedding

Vectors

Computation
Embedding

Vectors

Loop Vector

Loop
Embedding

Vector

FeedForward
Neural Network

Figure 7. The structure of the loop embedding unit.

5.3 Classification Layer
This last layer consists of a feedforward neural network that
takes as input the program embedding vector produced by
the previous layer and predicts the k-best classes of loop
interchanges, ordered according to the speedup they provide
(a loop interchange class represents a pair of loops to be
interchanged). The output of this layer, which represents
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the value predicted by the model, is represented as a vector
containing the duplication of ’k’ vectors, each composed of
the set of possible loop pairs.

The total number of loop pairs for a program depends on
its depth. However, to avoid dealing with a variable output
size, we chose to consider 7 loop levels at most. In case
the model encounters a program with more loop levels, it
predicts the best interchange for its first 7 outermost loops,
aiming mainly to optimize code parallelization. We will thus
have 21 possible pairs of loops (𝐶2

7 = 21). Furthermore, by
adding a class for the case where "no interchange" needs
to be applied, each vector in the output vector will have 22
elements.

Figure 8 illustrates the architecture of this last layer taking
as an example k=3. According to this example, the model
has predicted that the best option is to interchange the first
and the second loop (I(L0, L1)). The second best option is not
to perform any interchange, thus keeping the current order
of the program. The third best option is to interchange the
first and the third loop (I(L0, L2)).

Program Embedding
Vector

Feedforward
Neural Network Classification

Layer

0 1 0 ... 0
" " I(L0,L1)

1st Best Interchange

I(L0,L2) I(L5,L6)

1 0 0 ... 0
" " I(L0,L1)

2nd Best Interchange

I(L0,L2) I(L5,L6)

0 0 1 ... 0
" " I(L0,L1)

3rd Best Interchange

I(L0,L2) I(L5,L6)

Figure 8. The architecture of the classification layer with
k=3.

6 Evaluation
6.1 Experimental Settings
Our model was trained on data generated using the method-
ology described in Section 3. We randomly extracted 80%
of the dataset for the training, 10% for validation and 10%
as a test set. Additionally, we check that the distribution of
loop interchange instances, and program depths were fairly
distributed. That dataset was generated using a multi-core
dual-socket machine. Each socket is a 12-core Intel Xeon
E5-2695 v2 CPU with 128 GB RAM total. The same machine
was used to run all of our experiments. We trained the model
on a separate machine (Nvidia DGX A100 machine that has
8 Nvidia A100 GPUs with 80GB of memory for each). We
only used a single GPU for the training.

To test the performance of the model, both synthetic and
real-world benchmarks have been used. The latter is com-
posed of the same benchmarks used to evaluate the Tiramisu

cost model [5]. It contains Tiramisu programs covering dif-
ferent areas: linear algebra (matmul, for matrix multiplica-
tion; and jacobi (1D and 2D) and seidel2d, for solving linear
systems with the jacobi and the Gauss-Seidel method re-
spectively), image processing (blur for blurring images) and
simulation domain (heat2d and heat3d, for heat propagation
simulations in 2D and 3D spaces, respectively). Instead of
passing only one input to each benchmark, we pass four
different inputs. The goal here is to evaluate the model with
different input sizes for each benchmark. These inputs are
labeled as follows: MINI, SMALL, MEDIUM and LARGE. The
full list of benchmarks and their input sizes is presented
in Table 4 (Appendex A). The benchmark seidel2d-MINI in
this table, for example, is seidel2d with the input size MINI
(32 × 49 × 49).

We also used synthetic data to evaluated the model. It is
composed of 14161 synthetically generated programs. These
programs are generated randomly using the same method-
ology used to generate the dataset but they were not used
during the training. The goal here is to provide a wider range
of program patterns to further test our model.

We used the Cross-Entropy Loss function. This loss func-
tion computes the difference between the predictions made
by our model and the ground truth values provided in the
dataset, according smaller values to more accurate predic-
tions. Both the dropout method and the weight decay have
been used to ensure the regularization of the model, and
avoid over-fitting.
To evaluate the model, the accuracy classification score

has been used. By definition, it counts the number of samples
where the prediction (𝑦) is identical to the target values
(𝑦), or ground truth. Each time the prediction is performed
correctly (𝑦 = 𝑦), the indicator function (a.k.a. characteristic
function), noted below as 1, returns 1. If not, it will return
0. Adding up the resulting values of these function over
our dataset, and dividing them by the total number of the
samples (n), measures how correct the predictions were over
the dataset, which we call the accuracy of the prediction. The
following equation illustrates the formula used to compute
the accuracy:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑦,𝑦) = 1
𝑛

𝑛−1∑︁
𝑖=0

1(𝑦 = 𝑦)

As for our model, the output vector contains k sub-vectors
(𝑦1, 𝑦2...𝑦𝑘 ) presenting k ordered predictions of the loop in-
terchanges (in our experiments, k is equal to 5). The ground
truth (𝑦) here represents the best loop interchange, which
is found by compiling and running the program being opti-
mized. Basing on these values, many variations of accuracy
are used for more representative evaluation.

• 1-shot accuracy: it compares the first sub-vector
(𝑦1) of the output of our model with the best loop
interchange (𝑦). Here, we measure the ability of our
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method to correctly predict the best instance, directly,
in a single shot.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦1 (𝑦,𝑦) =
1
𝑛

𝑛−1∑︁
𝑖=0

1(𝑦1 = 𝑦)

• 2-shots accuracy: Here, we define a slightly larger
margin of error. The model’s prediction is considered
accurate, or correct, if the best loop interchange is
predicted in either the first (𝑦1) or the second (𝑦2) sub-
vector of the output. This accuracy should be bigger
than the first one, as more data points, that were not
predicted correctly at first, are now considered correct.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦2 (𝑦,𝑦) =
1
𝑛

𝑛−1∑︁
𝑖=0

1(𝑦1 = 𝑦 ∨ 𝑦2 = 𝑦)

• Any-shot accuracy: using this accuracy, we want to
measure whether the model is able predict the best
loop interchange at all. This is useful during the first
stages of the training of the model, since it proves
that the model is capable of predicting the best loop
interchange, even if it takes many shots to get it right.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑘 (𝑦,𝑦) =
1
𝑛

𝑛−1∑︁
𝑖=0

1(∃𝑖 ∈ 1..𝑘 : 𝑦𝑖 = 𝑦)

6.2 Tests
6.2.1 Evaluating the Model’s Accuracy. In this section,
we evaluate the accuracy of our loop interchange model on
the benchmarks and compare it with the accuracy of the
deep learning cost model currently used by the Tiramisu
auto-scheduler. We also compare our model to Pluto [8], a
state-of-the-art polyhedral compiler that does not use ma-
chine learning for its cost model. We report the 1-shot and
2-shots accuracy for our proposed model and for the current
Tiramisu model. Since Pluto only predicts one loop order for
each program, we only report the 1-shot accuracy for Pluto.

76,66%

94,00%

70,00%

80,00%

71,42%

1-shot 2-shots

Ac
cu

ra
cy

Our Model Tiramisu Model Pluto

Figure 9. The accuracy of the loop interchange model vs
Tiramisu’s model vs Pluto, on the benchmarks.

As shown on Figure 9, our model was able to achieve
higher accuracy than the Tiramisu model (+6.66% better
with 1-shot accuracy, and +14% with 2-shots accuracy). It
also outperformed Pluto by 5.24% (1-shot).
The difference with Pluto is because Pluto uses a linear

cost function (objective function for its ILP solver), and there-
fore a non-linear data-driven cost function, such as the one
we propose, would capture the complexity of the optimiza-
tion space much better. Moreover, Pluto doesn’t consider
loop sizes in its cost function which leads, in some cases, to
sub-optimal solutions. For example, Pluto predicts for the
different implementations of jacobi-2d that no loop inter-
change should be applied, while our model detects, for the
mini, small, and medium sizes, that moving a loop with big-
ger extent to the outermost loop level is more effective and
thus, applying this loop interchange gives a speedup of 1.6.

While our model was trained on a smaller amount of data
compared to Tiramisu’s model (208919 data points compared
to 1.8M data points for Tiramisu’s model), our model has the
advantage of being specialized. i.e., trained to only predict
the best loop interchanges. This is in contrast to the Tiramisu
model which is trained to be general to all code transforma-
tions (it predicts the expected speedup of any combination
of code and code transformations).

6.2.2 Evaluating the Loop Interchange Exploration
Time. In this section, we compare the execution time spent
by our model, and Tiramisu’s cost model [5] when exploring
loop interchange in Tiramisu’s auto-scheduler. We use both
models to predict the loop interchanges in Tiramisu’s auto-
scheduler. The evaluation is performed on the benchmarks.

The Tiramisu auto-scheduler uses a tree-structured search
space to model the problem of finding the best code trans-
formations and their parameters. In each level of the tree, a
new code transformation is explored. A deep-learning based
cost model is used as a cost model. This cost model estimates
the speedup of each schedule. The search algorithm, beam
search, picks the best N nodes having the best predicted
speedups, and explores them further in the next level. The
optimizations explored by the auto-scheduler are: loop fu-
sion, interchange, skewing, 2D tiling, 3D tiling, unrolling
and parallelization.
In the experiments of this section, we measure the time

spent in exploring loop interchange when expanding the
search tree (i.e., the time spent to explore all the possible
loop interchanges and pick the best ones). The results are
reported in Figure 10. It shows the speedups in exploring
loop interchange when our model is used compared to using
the cost model of tiramisu (values higher than 1 mean that
exploration using our model is faster).

The figure shows that, on all the benchmarks, our model
helps the autoscheduler find the best loop interchange faster
(4×median speedup). In the case of matmul for example, find-
ing the best loop interchange using our model is 4× faster
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Figure 10. Speedup in finding the best loop interchanges in
the benchmarks

than finding the best loop interchange using Tiramisu’s cost
model. This is because our model needs to be executed only
once, while Tiramisu’s cost model needs to be executed 4
times (one time to predict the speedup when no loop in-
terchange is applied, and three other times to predict the
speedup for each one of the possible loop interchanges in
matrix multiplication which has three loop levels).

While our model needs to be executed only once, regard-
less of the number of loop levels of the program being op-
timized, Tiramisu’s cost model needs to be executed once
for each possible loop interchange in the program, with the
number of possible loop interchanges growing quadratically
with the number of loop levels.

6.2.3 Evaluating the Speedups of Generated Code. In
this section, we evaluate the speedups of code generated
when our loop interchange model is used.

To do this, we integrate our model into Tiramisu’s auto-
scheduler. We use it to predict the best loop interchanges to
be explored in the next level when expanding the search tree.
As for the other transformations, we use a perfect cost model,
which returns the ground-truth, to pick the best transforma-
tions (the ground-truth in this case is the speedup obtained
by compiling and executing the optimized program).

We compare the speedups found using this setup with the
speedups found using the same auto-scheduler but when a
perfect cost model is used for all transformations. The goal
here is to measure whether the loop interchange model can
guide the auto-scheduler to find the best schedules.
Using a beam size equal to three, we recorded the final

schedule (sequence of chosen transformations) and speedup
of the generated code using the two autoschedulers described
above (the one with our model, and the one with the perfect
model). Table 2 reports these results. The third and forth
columns report the code speedups obtained when our model

is used to perform the auto-scheduling. In column three,
the baseline is the original, unoptimized code. Values higher
than 1 mean that the auto-scheduler could accelerate the
original code. In column four, the baseline is the schedule
found using a perfect model. Values equal to 1 mean that the
auto-scheduler with our model found the same speedup as
the auto-scheduler with a perfect cost model.
The second column provides, for each benchmark, the

schedule found when our model was used. The schedule is
expressed as a list of transformations, where each transforma-
tion is applied on certain loops and might have parameters.
The transformations are Skewing (S), Interchange (I), 2D
Tiling (T2), 3D Tiling (T3), Parallelization (P), and Unrolling
(U). The loops are labeled as L0, L1, L2, etc. where L0 indi-
cates the outermost loop. In jacobi2d-LARGE for example,
the schedule found is the combination of a skewing applied
on the two outermost loops (L0 and L1) with the skewing
parameters (2,1), and tiling of the two outermost loops with
the tiling parameters (32,32). The loop level L1 in the final
optimized code is parallelized along with the unrolling of
the loop level L4.

The third column of the table shows that the speedups ob-
tained over the original unoptimized code range from 1.0 to
467.94% (1.0 in this case means that the program was neither
optimized, nor degraded). Loop interchange was applied in 9
out of 28 benchmarks. In matrix multiplication for example,
the loop interchange helped improving the memory access
patterns and data locality. In the case of blur-LARGE, loop
interchange enabled better parallelism, since the outermost
loop in the original code has a small extent and therefore
applying an interchange would help in obtaining a better
parallelism as detailed in the introduction. Furthermore, our
model could detect that applying this interchange is not nec-
essary for the medium size input, and therefore decided to
only parallelize the outermost loop to optimize code. The
model has also successfully predicted that loop interchange
is not necessary in many benchmarks. This is important
since many programs do not need any loop interchange.
In all of the benchmarks (100%), our model led the auto-

scheduler to find the same schedules found by the auto-
scheduler with a perfect cost model. As a result, the speedups
obtainedwith ourmodel and those obtainedwhen the perfect
model were identical. Note that the schedules found by the
perfect model are not the optimal schedules. This is because
the search space exploration method used is beam-search
with a beam size equal to three. While this allows finding
good schedules, it does not search the whole space, and
favors schedules that provide an immediate benefit over
those that provide a delayed benefit. Note also that in many
cases, the autoscheduler with a perfect cost model findsmany
equivalent schedules that all lead to similar performance. An
arbitrary one of these is chosen. With these notes said, this
experiment shows that while our model is not perfect, it is
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Table 2. Results (schedules and speedups) of the auto-scheduling of the benchmarks using our loop interchange model.

Benchmark Schedule found with our model Speedup over
unoptimized
code

Speedup over
perfect au-
toscheduler

seidel2d-MINI S(L1,L2,3,1) (S(L0,L1,3,1)U(L2,8)) 1.47 1
seidel2d-SMALL S(L1,L2,2,1)T2(L1,L2,32,32) 1.43 1
seidel2d-MEDIUM S(L1,L2,3,2)T2(L1,L2,32,64) 1.56 1
seidel2d-LARGE S(L0,L1,2,1)P(L1)U(L2,4) 14.89 1

matmul-MINI I(L1,L2)U(L2,16) 4.91 1
matmul-SMALL I(L1,L2)P(L0)T2(L0,L1,32,32)U(L4,16) 10.28 1
matmul-MEDIUM I(L1,L2)P(L0)T2(L1,L2,64,128) 86.62 1
matmul-LARGE I(L1,L2)P(L0)T2(L1,L2,32,128) 467.94 1

jacobi1d-MINI U(L1,8) 1.28 1
jacobi1d-SMALL S(L0,L1,2,1) 2.04 1
jacobi1d-MEDIUM S(L0,L1,2,1) 2.59 1
jacobi1d-LARGE S(L0,L1,3,1) 2.1 1

jacobi2d-MINI I(L1,L2)S(L0,L1,3,2)U(L2,16) 3.09 1
jacobi2d-SMALL I(L1,L2)S(L1,L2,1,1) 3.12 1
jacobi2d-MEDIUM S(L1,L2,1,1) 1.91 1
jacobi2d-LARGE S(L0,L1,2,1)P(L1)T2(L0,L1,32,32)U(L4,8) 13.82 1

heat2d-MINI I(L0,L1)U(L1,8) 1.34 1
heat2d-SMALL 1.0 1
heat2d-MEDIUM P(L0)T2(L0,L1,64,128) 1.79 1
heat2d-LARGE P(L0)T2(L0,L1,32,64) 8.09 1

heat3d-MINI S(L0,L1,3,1)U(L3,8) 1.82 1
heat3d-SMALL I(L1,L2)U(L3,16) 1.35 1
heat3d-MEDIUM S(L2,L3,1,2) 1.25 1
heat3d-LARGE S(L0,L1,2,1)P(L1)U(L3,8) 18.6 1

blur-MINI U(L2,8) 2.39 1
blur-SMALL 1.0 1
blur-MEDIUM P(L0) 1.92 1
blur-LARGE I(L0,L1)P(L0)U(L2,8) 6.8 1

enough to enable the autoscheduler to find the same quality
of schedules that it would have found using a perfect model.

6.3 Other Design Choices
6.3.1 Single Prediction Model (1-best). During the first
stages of our work, we tried to predict directly the best
loop interchange (instead of predicting the best k loop in-
terchanges as we do in out final design). The classification
accuracy scores obtained using this model are presented in
the following table 3.

Table 3. Accuracies of the single prediction model

Test set Benchmark

80.163% 83.33%

Comparing these results with the 1-shot accuracies of
the k-best model, we can see that numbers are close. The
1-shot accuracy of the k-best (with k = 5) model is 0.2% better
than the single prediction model in the test set, whereas it
is 3.33% worse in the benchmarks (this difference is due to
one wrong prediction in the benchmarks, since the number
of benchmarks is small). Overall, the results are close with a
slight advantage for the 1-best model.

However, comparing its results with the 2-shots accuracy,
we see a larger difference. On both benchmark and test set,
the 2-shots accuracy of the k-best model (with k = 5) is better.
Our proposed model reaches a 2-shots accuracy of 94.64%
on the test set, and 86.66% on the benchmark. Our proposed
model is 14% better than the single prediction model in the
test set and 3.33% in the benchmarks.
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The accuracy of the k-best model with 2-shots surpass the
accuracy of single prediction model. Even if the performance
of the latter are slightly better for 1-shot, the use of the k-best
model is better when combined with a more general search
algorithm. First, because the k-best model has higher accura-
cies and second because when used in an auto-scheduler, it
proposes multiple loop interchanges to be explored further.
This is useful because while certain loop interchanges do
not provide the best speedup when evaluated early in the
exploration, they provide the best speedups when combined
with other optimizations later on during the exploration.
The code presented in the introduction is an example of this,
where applying loop interchange alone reduces data locality
and decreases performance but when this loop interchange
is combined with parallelization the combination provides
the best speedup.

Having a model predicting only one loop interchange (sin-
gle prediction model) forces the search function to pick one
schedule in the loop interchange level. The space explored
later is significantly reduced, as only schedules using this
loop interchange are considered.

6.3.2 Multi-Label Classification. Wepreviously presented
our model’s output format, which consists in assigning the
input program to one of the 22 possible classes (these 22
classes form a vector). We duplicate this vector ’k’ times to
have the k-best loop interchanges. In addition to this for-
mat, we also explored the multi-label classification format.
In this type of classification, an object can belong to several
classes at the same time. In our case, the goal is to predict
the ability of a loop to be interchanged. Thus, each loop level
is represented as a class, and since the model aims to predict
the two loops to be interchanged, it assigns the program
to two classes. The two classes (two loops) that have the
highest values in the output vector represent the two loops
to be interchanged. As we consider 7 loop levels at most, the
output is a vector of 7 elements. However, to consider the
case where no interchange should be applied, we chose to
use a threshold as a limit value to define whether any loops
should be interchanged at all. If the highest predicted value
is lower than this threshold, we consider that no loop should
be interchanged, and thus predict that no loop interchange
should be performed, by setting all elements of the vector to
zero.
Figure 11 shows a comparison of the accuracy of two

models: the single shot model (output vector of 22 elements)
and the multi-label one (output vector of 7 elements). In
this figure, we show the accuracy of the multi-label model
for different values of the threshold ranging from 0 to 1.
To simplify the comparison, we also represent in the same
figure the accuracy of our proposed loop interchange model
(which is constant because this model does not require the
definition of a threshold). The models are evaluated on the
test set, as well as on the benchmarks.

0.0 0.2 0.4 0.6 0.8 1.0
Threshhold

40

50

60

70

80

Models Accuracy

Our Proposed Model Accuracy on Benchmark
Multilabel Model Accuracy on Benchmark
Our Proposed Model Accuracy on Test set
Multilabel Model Accuracy on Test set

Figure 11.Our proposedmodel andmulti-label classification
model accuracy.

For the multi-label classification model, a threshold value
close to 0 implies poor performance, because it enforces the
model to consider that an interchange must be applied, and
that the case of "no loop interchange" cannot occur. However,
our test set contains approximately 50% of programs where
no interchange should be applied. On the opposite, a value
close to 1 forces the model to only consider the case where
no loop interchange is applied. Thus, according to the graph,
the model has 50% accuracy for these values. This accuracy
is due to the high number of programs where applying no
interchange is the best decision. Furthermore, no value of
the threshold allows the multi-label classification model to
reach the performance obtained by our proposed model.

6.4 Summary of Evaluation Results
Our evaluation has shown that the proposed k-best model
has a higher accuracy than the current Tiramisu cost model.
It also has shown that finding the best loop to interchange us-
ing our proposed model is less time consuming compared to
exploring the space using the current Tiramisu’s cost model.
With this increase in the exploration speed, the proposed
model did not lead to a loss in the speedup of generated code.
The speedup of code generated when our model is used is
comparable to the speedup obtained when Tiramisu’s cur-
rent model is used.
We have also explored different design choices to im-

plement the loop interchange model. The single prediction
model served as a starting point, modeling the loop inter-
change prediction problem as a classification problem. Then,
we explored the multi-label classification format. The latter,
having not shown better results, was discarded. However, in
order to integrate our model to the Tiramisu auto-scheduler
which explores the search space using a heuristic, we modi-
fied the single prediction model so that it can predict the 5
best loop interchanges to apply on a program (k-best model).
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The k-best model turned out to be much better. It was able to
increase the 2-Shots accuracy of loop interchange prediction
by up to 14%.

7 Related Work
Previous research has tried to use analytical models to auto-
matically apply a loop interchange when profitable. Allen &
kennedy [3], try to enable the application of vectorization by
pushing the dependence-free loops to the innermost position.
In GCC [1], two loops are interchanged if this transformation
allows better data locality, creates more invariant memory
references, or makes all memory accesses contiguous. How-
ever, this process is done for each pair of loops. This means
that the compilation time increases proportionally with the
number of loop levels in every loop nest in the program.

Many polyhedral compilers such as Pluto [8], LLVM Poly
[14], and Tensor Comprehensions [18], use the Pluto algo-
rithm [7], which uses integer linear programming (ILP) to
find the best order of execution of statements and thus au-
tomatically apply loop interchange. The main idea of this
algorithm is to minimize the distance between producer and
consumer statements, which pushes parallel loops to the out-
ermost levels. With this approach, Pluto always prioritizes
maximizing data locality and outermost parallelism when
this is legal. However, this can lead to a decrease in per-
formance if the best optimizations depend on other factors
(such as the loop extent or the data layout being used).

Other compilers have used machine learning to automati-
cally optimize code. Those compilers include Tiramisu [5]
which uses a deep learning based cost model, jointly with
a tree search algorithm, to explore the search space and
find the best set of code transformations to apply. AutoTVM
[10] uses a deep learning model that predicts the runtime
of tensor programs and select code transformations parame-
ters. Similarly, Halide [2] uses a feedforward neural network
to predict the execution time of programs and explore the
space of code transformations. Our work is complementary
to these auto-schedulers. Our model can be integrated in the
search techniques used by these models to reduce the overall
search space exploration time.
Previous research has also addressed the problem of se-

lecting transformation parameters using machine learning.
Wang and O’Boyle [19] used a machine learning model to
determine the best number of threads for an already paral-
lelized program. DeepTune [11] proposed a neural network
to predict the mapping of OpenCL kernels. In the same con-
text, Rahman et al. [17] proposed an artificial neural network
in order to select the best tile sizes. Li and Garzaran [16] pro-
posed a classification system which determines the best loop
levels to tile and the best tile sizes. Our proposed model is
specialized in selecting the best loops to interchange.

8 Conclusion
We presented a deep learning model designed to predict the
best loops to interchange in a program. By modeling this
problem as a classification problem, our model takes as input
simple and high-level attributes of a program and predicts,
in order, the k-best loop interchanges to apply. We evaluated
the proposed model on a benchmark of Tiramisu programs
and showed an accuracy of 76.66% for 1-shot and 94% for
2-shots. Experiments show that our model outperforms the
cost model currently used by the Tiramisu compiler by 6.66%
in terms of 1-shot accuracy, and 14% with 2-shots accuracy,
while at the same time reducing the total execution time
needed for predicting the best pair of loops to interchange.
This is without any loss in the speedup of the generated
code.
Adapting the proposed model to predict where to apply

loop interchange, as well as generalizing it to other architec-
tures and evaluation it outside of the Tiramisu framework
are to be explored for future work.
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A Benchmark Sizes
Table 4 details the benchmarks used in Section 6, and their
input sizes.
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Table 4. Input data sizes for the benchmarks

Benchmark Input Sizes

seidel2d-MINI 32 x 49 x 49
seidel2d-SMALL 48 x 129 x 129
seidel2d-MEDIUM 128 x 449 x 449
seidel2d-LARGE 512 x 2049 x 2049
matmul-MINI 16 x 32 x 48
matmul-SMALL 64 x 96 x 128
matmul-MEDIUM 192 x 256 x 320
matmul-LARGE 1024 x 1280 x 1536
jacobi1d-MINI 64 x 33
jacobi1d-SMALL 96 x 129
jacobi1d-MEDIUM 256 x 449
jacobi1d-LARGE 1024 x 2049
jacobi2d-MINI 64 x 49 x 49
jacobi2d-SMALL 48 x 129 x 129
jacobi2d-MEDIUM 256 x 385 x 385
jacobi2d-LARGE 1024 x 1537 x 1537
heat2d-MINI 17 x 65
heat2d-SMALL 129 x 65
heat2d-MEDIUM 257 x 257
heat2d-LARGE 1025x1537
heat3d-MINI 1024 x 129 x 129 x 129
heat3d-SMALL 256 x 49 x 49 x 49
heat3d-MEDIUM 48 x 17 x 17 x 17
heat3d-LARGE 96 x 33 x 33 x 33
blur-MINI 4 x 17 x 33
blur-SMALL 4 x 33 x 97
blur-MEDIUM 4 x 97 x 257
blur-LARGE 4 x 513 x 1025
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